Project Definition Information Sheet

(HPDC)

The objective of our MAGMAproject is to help you solve your casting defects issues, optimize your casting process and find a robust solution that fits to your needs. Using MAGMASOFT[®] & the related modules, we are going well beyond solidification modeling. We can compile and document step-by-step improvements and potential solutions - from a simple solidification simulation, to a full factorial design of experiments (DoE) or an autonomous optimization of your casting process using our well proven MAGMA APPROACH.

MAGMASOFT[®] is capable of considering many variables. In order to obtain the best results for your project, a detailed process description is required to fill up in this information sheet. If the exact values are not available, please estimate them closely. Please prepare the CAD file in .stl / .stp format for each component respectively and use the common coordinate system when you export from an assembly model. Please provide as cast model but if only machined model is available, please specify all the machined surfaces and drilled holes.

We will contact you shortly prior to starting the project to confirm these parameters.

Contact Name	
Company	
Phone No	
Email address	
Project name	
MAGMA Representative	
Objective of the project:	

MAGMA | MAGMA Engineering Asia-Pacific Pte. Ltd. 25 International Business Park | German Centre #02-24/25 | 609916 Singapore Tel: +65 6564 3435 | www.magmasoft.com.sg | project@magmasoft.com.sg

Part 1a: Project Details

Project name / Part number									
Drawing		Yes			No				
Unit		mm			inch				
Prepare solid CAD in single co- ordinate based on your purchased interface reader Please prepare the CAD file in .stl / .stp format for each component respectively		STL			Step				
Please provide the CAD file as a zipp	ed f	older	or uploa	d o	n X Exch	ange			
Breakdown of CAD / Geometry – Wat	ter t	ight v	vith min e	rro	ors:				
			01 -	_	-	•	460		01 Overflow
264 Z A	xis]	02 —		Ko		384		02 Casting
			03		Q	B	.230 .153		03 Ingate (s)
-sa 176 X Axis	O Axis		×		9	<u>384</u> <u>307</u> <u>230</u> -153	153 -77 -77		04 Runner
Note: Pls provide below as separate .	stl/s	stp file	e (solid w	ate	ertight mo	del)			
	09				05	05	Fix Inse	ərt	
						06	Shot Bu	ush	l
		T			K	07	Slide C	ore	e 1
		$\overline{\mathbf{A}}$			3	08	Slide C	ore	e 2
			~		2	09	Fix Die	Сс	ol
		4	• •		• 08	10	Moving	Ins	sert
					798	11	Eject pi	ins	(s)
399 -266 -133 0 +133 +137 -266 -133 0 + 133 -266	26	6	99		-	12	Mov co	ol	
	333	\$7[f nm]		~		13	Spread	ler	cool
14 13 12					06.	14	Spread	ler	cone
	.					15	Spot Co	ooli	ing

Part 1b: Shot Sleeve Data/Definition

Please \boxtimes the appropriate box

E 						
Please p	provide sleeve dwg (if available).					
LOC	Description of Shot Sleeve parameters	Value 🗌 mm 🗌 inch				
"A"	Plunger Diameter					
"B"	Active Chamber Length (surface of pl to surface of spreader)					
"C"	Biscuit Thickness (average value)					
"D" (*)	Plunger position when pour hole is covered					
"E" (*)	Wall Thickness chamber					
"F" (*)	Distance between ladle lip and base of shot sleeve					

Part 1c: Ladle Definition (Optional (*))

1. Pouring by Ladle		2. Pouring by Lauder			
Start Dosing	(after die close)	Dosing Duration	(secs)		
Dosing Definition					
	(secs) (*)				
Dosing Time					
	(secs) <mark>(*)</mark>				
Dwell Time					
	(secs) (*)				

Cooling Definition :Fix & Moving dies and slide core inclusive of spot cooling INFLOW/OUTFLOW Note : Pls indicate on your die drawing (.dwg) arrow direction of where the in flow and out flow **(Optional (*))**

			ACCESS OF A CONSTRAINT OF A CO
Figure 001 : Fix side	Figure 002 : Moving	Figure 003 : Side	Figure 004 : Spot
cooling IN & OUT	side cooling IN & OUT	Core IN & OUT Flow	Cooling IN & OUT
Flow (*)	Flow (*)	(*)	Flow * 3 (*)

Part 2a: Material Definitions

Description of Material	Material	Temperature °C
Cast		Initial:
Dies		Initial:
Side core		Initial:
Insert		Initial:
Plunger		Initial:
Medium of Cooling		Initial:
Medium of Heating		Initial:

Part 2b : Definition Die Cooling/Heating (Optional (*))

Please \boxtimes the appropriate box

Description of Cooling	Material	Temperature °C
Fix Cooling Channel		
\Box Water \rightarrow Flow rate:		Initial:
\Box Oil \rightarrow Flow rate:		
Mov Cooling Channel		
\Box Water \rightarrow Flow rate:		Initial:
\Box Oil \rightarrow Flow rate:		
Spot Cooling (mov1)		
\Box Water \rightarrow Flow rate:		Initial:
\Box Oil \rightarrow Flow rate:		
Slide Core 1 Channel		
\Box Water \rightarrow Flow rate:		Initial:
\Box Oil \rightarrow Flow rate:		
Slide Core 2 Channel		
\Box Water \rightarrow Flow rate:		Initial:
\Box Oil \rightarrow Flow rate:		

(Note : For more detail Time step for cooling pls refer to Appendix "A")

23	The second secon			Thickness of constraints and c
Plain	Coordinate Plane	X/Y	Unit	Round bottom of hole
D	Outer Diameter		Mm (*)	
L	Length of cooling line		Mm (*)	Thickness of
W	Thickness of separating Item		Mm (*)	separating item
	Round bottom Hole (ROUNDED))	•	

Please provide CAD file of spot cooling / Die Dwg to indicate location and depth and connection if they are connected as a loop. (Optional (*))

Part 3a: Process Parameter Set Up

(7)Start Dosing (after die closed)	sec	sec
(8) Dosing Time (Pour start to Pour end)	sec	sec
(9) Dwell Time (Period of time metal in sleeve)	sec	sec

Part 3b: Die Preparation (Optional (*))

Please \boxtimes the appropriate box

Type of Spray	Nozzle (Standard)		Copper Cartridge
B-B A-A		626 501	
Thick of spray cartridge		Shot_Cente	r – to Cartridge Home:mm
Width "A-A" mm	(*)		
Width "B-B" mm	(*)		

Part 3c: Fix Die Insert (Optional (*)) Please \boxtimes the appropriate box

Please replace this picture with your CAD file of Fix Dies (and all related parts of dies related to spray on the fix side.	Which	h	Type of Spray	
			Classical Spray	
427			Spray Surfaces	
A1 A2 356			Spray Nozzles	
		/ Surface (re le Spray (cire	ectangular) cle)	
(A6) (Area	Spray (s)	Blow (s)	
142	A1			
X(mm) +	A2			
	A3			
-213 -47 71 - 0 71	A4			
	A5			
-71				
	A7			

The above is just a illustration (example). Please provide us section of die where different kinds of spray is being applied as well as the video of spraying and blowing separately for the fix (1 video) and one other video for Moving side.

Part 3d: Mov Die – Insert (includes slide core 1 & 2) (Optional (*))

		Which		Тур	be of Spray
				Cla	ssical Spray
				Sp	ray Surfaces
				Sp	ray Nozzles
		Spray	Surface (re	ctar	igular)
		Nozzle	e Spray (circ	cle)	
		Area	Spray (s)		Blow (s)
		A1			
		A2			
214 143 71 20 339 Ko		A3			
Note : Please supply us a video of the moving spray		A4			
process from moment die opens – Die fully closed again	MAGMA	\bigcirc			
	RVRA-R VRA-R	Sp D	n	nm	
		Sp U	n	nm	

Part 3e: Filling Definition

Please \boxtimes the appropriate box

Machine Type	Remarks
Shot chamber length	mm
Sleeve Diameter	mm
Plunger position when pour hole is covered	mm
Holding furnace temperature (Dosing temperature)	С
1 st phase Injection speed	m/s
Constant Velocity	m/s
Constant Acceleration	m/s
Max machine acceleration	sec
High Speed Switch over point	mm
Metal at the gate	mm
2 nd phase Injection speed	m/s
Start deceleration at	mm
Deceleration Speed	m/s

*Please provide shot curve from machine together with this form.

Example of Shot Curve

(Optional Shot Curve) - (Advanced) – Multi-stage Injection system

*Please provide if available:

Point	1	2	3	4	5	6	7	8	9	10	Fml End
Speed–User Sel											
Position mm											
Shot Spd m/s											

Hi Spd Change Point			
Dry Shot Stroke	mm	Pressure set up time	mm
Biscuit Size	mm	Press. Up Time	ms
Fwd Limit Stroke	mm	Total Cycle Time	Sec

Intensification Definition (Ramp)

Starting Pressure [p(s)]	bar
(Accumulator Pressure)	
Pressure set up time (ST)	sec
Working Pressure [p (w)]	bar
Reduction Control time	Sec Start pressure reduction
Pressure Reduction time (RT)	Sec

Simplified Vacuum Control (If used than mandatory)

Rate of Evacuation	mbar	Simplified Vacuum
Final Vacuum Pressure	mbar	(lag 0.75
On Control – Time	secs	1 0.50 2 0.25
On Control – Plunger position	mm	0.00 0 1

HPDC Machine – Cold Chamber

Machine Type (model/Brand)	Unit
Min Piston Diameter	mm
Max Piston Diameter	mm
Max Piston velocity	m/s
Max piston acceleration	m/s2
Locking Force	kN
Safety Factor	%
Distance between tie bars	mm
Max Hydraulic Injection Pressure	bar
Max. dynamic injection force	kN
Max multi Injection Force	kN

Local Squeezing Definition (provide location on CAD exact coordinates of Local Squeeze point (s)

Material	Diameter (mm)	Stroke (mm)	Mat ID
Squeeze Reservoir 1 #			
Squeeze Reservoir 2 #			
Continue	Start Time (s)	Duration (s)	Pressure (bar)
Squeeze Reservoir 1 #			
Squeeze Reservoir 2 #			

Die Opens & Casting Ejection Definition – Stress Analysis

Die Open by (time)	Sec	View of DC preferred
Die Open by (temp)	Centigrade	
Die Open by (Thermo)	Temp fall below	
Applicable with Stress Analysis		
Time to eject casting	sec	
Time reference		
Duration of ejection	sec	
Stroke of Ejection	sec	Video with safety gate opens

Please email the completed form and CAD file to us at project@magmasoft.com.sg or call us at +65 6564 3435 if you need assistance to complete the submission.

In addition, please feel free to share with us if you have the casting results, pictures of casting defects, microstructure or other technical information that you think might be helpful to kick start the project.

You may use MAGMA's upload/download tool for big file size upload thru our website (customer support section): <u>https://www.magmasoft.com.sg/en/support/intro/</u>

Note that you would need to register an account before you could access to the feature: https://www.magmasoft.com.sg/en/support/registration/

Please feel free to contact us should you have any queries.

Last updated on October 2019